US 2005/0099398 Al

natives for use in documents that do not use, accept, or
process ink or speech data and that do not support a data
structure including such alternatives. More specifically,
aspects of the present invention can be used to enable
corrections in any Edit or RichEdit field, any sub-classed
Edit or RichEdit field, or any super-classed Edit or RichEdit
field, without replacing any existing Edit or RichEdit binary
file. Because Edit and RichEdit fields are commonly used
throughout the Windows® operating system (available from
Microsoft Corporation) and existing application programs,
the ability to support editing and corrections in these fields
provides very good coverage of existing programs and fields
(for example, perhaps 90% of fields). Additionally, at least
some examples of the present invention allow users to turn
off the functionality, if desired, e.g., at the application
program level, edit class level, or specified field level, so the
user need not use aspects of the invention or make it
available, if desired (e.g., in the event that aspects of the
invention are believed to interfere in some manner with
proper operation of a specific application program and/or in
specific documents).

[0087] Basically, systems and methods according to this
specific example and implementation of the invention oper-
ate as follows. Insertion point location changes and selection
events are monitored (as described in more detail below)
using the Microsoft Active Accessibility framework that is
part of Microsoft’s Windows XP Tablet PC Edition™ oper-
ating system. Detection of these changes and events allow
determination of a new insertion point location and/or a
selection event. These systems and methods use conven-
tional Windows® Edit messages (supported by Edit and
RichEdit Windows® classes) to determine the insertion
point location or text selection within the electronic docu-
ment and the document’s length. This information is used to
infer the type of text altering event that occurred in almost
all common operations. By tracking the insertion point
location changes and selection events, systems and methods
according to at least this example of the invention are able
to maintain a separate document (like the expanded version
of electronic document 714) that mirrors the content of the
user-visible document (e.g., a document that does not sup-
port the Text Services Framework, like electronic document
706). The separate expanded version of the electronic docu-
ment is a full Text Services Framework document, so it
supports and maintains the alternatives for recognized words
injected into the document, e.g., by speech or handwriting
recognition or another source. This full Text Services
Framework document then may be used by systems and
methods according to this example of the invention to
provide alternatives for a selected word to present to the user
in an appropriate correction user interface, as generally
described above.

[0088] Various aspects of the above noted systems and
methods will be described in more detail. The Text Services
Framework on commercially available pen-based comput-
ing systems using Microsoft’s Windows XP Tablet PC
Edition™ operating system contain a mode of operation that
supports text injection into existing, non-Text Services
Framework type applications. This “text injector” system is
known as “Text Services Framework Unaware Application
Support,” and it is enabled for various 32 bit applications. A
Text Services Framework text insertion product will receive
notification that a Text Services Framework supported docu-
ment is active when focus switches to a Text Services

May 12, 2005

Framework Unaware Application Support application.
When the text insertion product wants to inject text (e.g.,
into the Text Services Framework Unaware Application
Support application), it injects the text into a Text Services
Framework supported document (e.g., the Text Services
Framework Unaware Application Support document) in the
same way it would if the document was a full Text Services
Framework supported document. The Text Services Frame-
work Unaware Application Support then takes that text and
causes it to be injected into the actual field of the non-Text
Services Framework document.

[0089] Because the Text Services Framework Unaware
Application Support document is, for all intents and pur-
poses, a full but temporary context, all the usual behaviors
of a full Text Services framework document are available
when it is used. Therefore, any Text Services Framework
text insertion product can monitor this context and receive
notifications when it changes. In systems and methods
according to at least some examples of this invention, when
a text injection into the Text Services Framework Unaware
Application Support context is noted, the injection is queried
and the text and all associated alternatives data (if any) are
copied out (e.g., in a serialized data byte stream to the
backing store document).

[0090] An insertion point tracking piece is used to monitor
changes in the current insertion point location and/or selec-
tion events using Microsoft Active Accessibility events, to
determine when to investigate changes in an electronic
document. When a Microsoft Active Accessibility caret
event occurs, Edit messages are used to determine the
current insertion point location in the document and the
document length. From this information, the type of text
change that just occurred in the document often can be
inferred. In the cases where the changes cannot be inferred,
the expanded version of the electronic document (or the
backing store version) is discarded. The following table
shows examples of how various insertion point (“IP”) loca-
tion change events can be interpreted in various examples of
systems and methods according to the invention:

P
End Document Loca- IP
Original Ele- Length tion Location

Element ment Change at Start at End Comments
P P +X P P+x Text added at IP Start
P P +X P Not P+x Lost Synchronization
P P None P P IP Location Change or
Nothing Happened
P P -1 P P-1 Character before IP
deleted by backspace
P P -1 P P-1(on Carriage return before
previous IP deleted by
line) backspace
P P -2 P P-2(on Carriage return/line
previous feed pair deleted by
line) backspace
P P -1 P P Following character
deleted
P P -1 P P Following carriage
(-1 Line) return deleted
P P -2 P P Following carriage
(-1 Line) return/line feed pair

deleted

P Lost Synchronization

—

P All Others

